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Abstract

The CyNER model [1] was loaded into a Python 3.8.15 environment and trained on text
scraped from Cybersecurity and Infrastructure Security Agency (CISA) alerts [2], via
Selenium 4.7.2. Entities in the used datasets were labelled using Prodigy 1.11.8 and the
output .jsonl converted to IOB-tagged .txt files. Three datasets were ultimately used to train
separate model instances, containing either 1) scraped text purely from CISA alerts, 2) text
provided by the CyNER repository, or 3) a combination of both, where the manually labelled
text was appended to the datasets provided by CyNER. Macro-averaged F1-scores for each
model instance indicated poorer generalisation in the model instance trained on dataset (1),
which might be explained by the small dataset size and its restriction to CISA alerts. Potential
improvements include increasing the data volume (number of data entries) used to train the
model, and widening the scope of the data entries to Cybersecurity-related text outside of
CISA alerts.

Introduction

In Machine Learning (ML), Named Entity Recognition (NER) is a type of Natural Language
Processing (NLP) technique. It involves the identification of proper nouns, or specific entities
in a text corpus or dataset. Proper nouns are defined as specific instances of larger entity
classes, or common nouns [3, p. 4]. For example, “Mary” and “John” can be considered
proper nouns under a larger “Name” or “Person” class.1

NER models are commonly used in optimising search query results, language translation, and
has also been especially prominent in the biomedical industry, for the identification of genes,
drugs and diseases [4, p. 71]. Similarly, the goal of this project is to train an NER model that
may be useful in identifying cybersecurity-related entities (e.g. malwares).

However, before diving into the project methodology, it is important to first understand
machine learning and natural language processing from a largely conceptual, top-down view:

1. What actually is machine learning?

The field of machine learning is considered by many to have been born with the invention of
Rosenblatt’s perceptron [5] in 1957 (based loosely on the workings of biological neurons).
Since then, extensive research within the field led to its rapid development into what we
know today as artificial neural networks (Fig. 1) and their many variants.

1 There is a certain ambiguity in the useful definition of an “entity” - it can sometimes be desirable for trained
NER models to recognise lower level common nouns (e.g.  “Trojan malware”, which is under the larger class
“Malware” but in itself still a class as well). It is important to specify the general rules followed when
annotating data, especially within the field of NLP, so that fair comparisons can be made across projects.
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Fig. 1 - Illustration of the structure of a regular artificial neural network (ANN), which
consists of input, hidden and output layers [6]

Machine learning is split into two large categories; supervised learning and unsupervised
learning. Supervised learning models learn from labelled datasets, and map inputs (features)
to outputs (targets). On the other hand, unsupervised learning models learn from unlabelled
datasets, which do not contain target variables.

Because supervised learning models can learn directly from target variables within a dataset,
they tend to be more accurate across the board than unsupervised learning models, which
instead have to use their underlying algorithms to form and quantify their own target
variables. Supervised learning is more commonly seen in ML applications as a result of this.

This report will not cover the mechanics of unsupervised learning models, which vary greatly
in structure, and instead delves strictly into supervised learning concepts in conjunction with
ANNs.

2. What is a “model” and how does it work?

An ML model is essentially an iterative and cyclic computer algorithm which is capable of
generalising from training data [7, p. 5]. In the case of supervised learning with ANNs, most
models include 2 key processes, known as forward propagation and backpropagation.

Forward propagation is what allows a model to make an output prediction based on input
data, and involves 3 sub-processes (Fig. 2), namely 1) attaching input features ( ) from the𝑥

𝑛
input layer to randomly initialised weights ( ), 2) applying an activation function to the sum𝑤

𝑛
of the weighted inputs (including a bias where is a constant, which behaves like a𝑥

0
𝑤

0
𝑥

0
weight to a constant input) in hidden layer(s), and 3) calculating the loss/cost function.



Fig. 2 - A schematic representation of supervised learning within a simple neural network
with 1 hidden neuron; in this case, the used activation function is a sigmoid function as

expressed by , and the loss function a simple difference between the actual predictedσ(𝑛𝑒𝑡)
output and the predicted output [8]. Stacking of hidden layer neurons (orange) as seen𝑎𝑙 𝑦𝑡

in Fig. 1 allows ANNs to better match complex relationships between features and targets.

The activation function can be thought of as determining a neuron’s output from its inputs
(somewhat equivalent to when a biological neuron “fires”), and the loss function an indicator
of error between the model’s predicted output and the actual output.

In practice, activation and loss functions vary greatly across different applications. For
example, regression models often use a linear activation and Mean Squared Error (MSE) loss,
while classification models, which operate on probability, often require a Sigmoid activation
(due to its 0 to 1 range) with Binary Cross Entropy loss [9].

Backpropagation is the corrective counterpart to forward propagation. As its name suggests,
it is a way of moving backwards through an ANN, from the output to the input layer, and
making recursive changes to the weights for each neuron based on its desired activation
output [10]. Changes to the parameters are based on the concept of Gradient Descent [11],
which states that a differentiable function (in this case, the loss function) with respect to a
variable is minimised when changing that variable in the direction of the negative of the
gradient of the function at a given point. This can be more succinctly represented as

𝑥
𝑛+1

= 𝑥
𝑛

− γ∇𝐹(𝑥
𝑛
)

where:
1. can be substituted for the input weights, since the loss of a given neuron’s activation𝑥

output is indeed partially differentiable with respect to its input weights
2. The learning rate is small enough such thatγ 𝐹(𝑥

𝑛+1
) < 𝐹(𝑥

𝑛
)

Cyclic repetitions of forward and backpropagation is the fundamental method which ML
models use to “learn”.

Note that more recently discovered alternatives to backpropagation do exist; some examples
include difference target propagation and synthetic gradients [12], though such options still
serve a principle purpose of optimising weights across neural layers.



3. Natural Language Processing

Unlike typical linear regression, NLP learns from text instead of numbers. Text in itself is
considered “unstructured” data, since linguistic patterns are highly complex and make little
sense to a computer which ultimately operates in bits. As such, additional pre-processing
steps are required, most notably tokenization and token vectorisation. The process of
tokenization breaks text into smaller chunks (tokens) based on user-specified granularity2

(e.g. sentences, phrases, words, etc.) and edge-case rules (e.g. what the model should do with
punctuation, acronyms etc.)[13][14]. Tokens are then allocated a vector, often using either
one-hot encodings or embeddings (Fig. 3), so that the model can compute patterns across the
text sequences numerically; in essence, token vectorisation serves to extract features from
text.

Fig. 3 - A representation of allocated vectors using a) one-hot encodings, which hard-codes a
single, binary vector dimension to each unique token (where the positive value’s position

represents its dimension allocation) and b) token embeddings, which extracts features based
on the semantic context of the tokens [15]

Token embedding is often preferred [15, p. 2] due to its ability to reveal semantic
relationships between tokens (e.g. 𝑣("𝑚𝑎𝑛") − 𝑣("𝑤𝑜𝑚𝑎𝑛") + 𝑣("𝑞𝑢𝑒𝑒𝑛") = 𝑣("𝑘𝑖𝑛𝑔")
), and its scalability with larger datasets, since the vector dimensions do not necessarily
increase as more unique tokens are fed into the model.

On top of additional data pre-processing, NLP utilises slightly different model architectures
to regular ANNs. The most basic example of this is the Recurrent Neural Network (RNN)
architecture (Fig. 4).

Fig. 4 - Schematic representation of an RNN. The horizontal axis does not indicate data flow
across neural layers, but rather data flow from input neural layers (yellow) to output neural

layers (orange) across iterations in a sequence (time axis) [16]

2 Splitting text into smaller tokens (below the word level) has been known to aid models in better understanding
the semantics contained within words [17, p. 2]



RNNs are a type of sequence-based model; that is, they are able to iterate through a sequence
and derive contextual information depending on the order of the input data sequence. The
defining trait of such sequence-based models is their ability to transfer information across
iterations such that they can “remember” information. In the case of RNNs, this takes the
form of the variables to (Fig. 4).ℎ

0
ℎ

𝑡

It should be noted that ML tasks rarely involve single models. More often than not, data is
processed within pipelines, which incorporate the use of numerous models, data cleaning
techniques, and model tuning techniques, such as transformer models [18], lemmatization and
stemming [19, pp. 353 - 356], as well as hyperparameters (including learning rate [20], epoch
count and batch size [21]), which cannot all be covered in this report.

4. Model assessment metrics

For classification models (such as those in NER), the outcome of each of a model’s
predictions can either be a true positive, true negative, false positive or false negative, often
represented as a confusion matrix (Fig. 5)

Fig. 5 - A confusion matrix for multiclass ( to ) classification models, where the class in𝐶
0

𝐶
𝑛

question is [22]𝐶
𝑘

Based on the confusion matrix, a few metrics [23][24] are commonly used to assess a
classification model’s performance for a particular class (i.e. the target variable):

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2( 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 )

Each metric has a range between 0 and 1 inclusive, where larger values are “better”.



Precision and recall are considered complementary metrics; the former measures the
percentage of predicted positive results which were correct, while the latter measures the
percentage of actually positive results which were correctly predicted. To better illustrate
their complementary nature, imagine a scenario where the class in question is a binary
indicator of whether an object is an apple or not. If one were to say that all objects are apples,
then the model would exhibit a perfect recall score of 1 because there were no false negatives
(no object which was actually an apple was incorrectly predicted as something else), and a
precision very close to 0 because there are many false positives (every object which was not
actually an apple was incorrectly predicted as an apple). The exact opposite would be true if
the statement was instead that all objects are not apples.

Depending on the scenario, precision or recall might be maximised at the other’s expense.
However, in cases where predicting false negatives and false positives are equally
detrimental, the F1-score, a harmonic mean between precision and recall, might be a better
indicator of a model’s overall performance. This is attributed to its tendency to output lower
values for more extreme precisions and recalls.

A handful of averages, specifically micro, macro and weighted averages [24], are also
commonly used to assess the above metrics across multiple classes. For this project, the
macro-averaged F1-score is used to assess the CyNER model’s performance across 5 labelled
entity classes, due to the metric’s unweighted nature (i.e. F1-scores for each class contribute
equally to the average).

Methodology

Operating System: Windows 10 x64 machine
Hardware: NVIDIA RTX A5000 GPU with 16GB GDDR6 Memory

1. Compatible versions of NVIDIA’s CUDA and cuDNN were downloaded globally to
allow for GPU-enabled training. Microsoft Visual Studio was also downloaded as it
contains pre-requisite dependencies for the CUDA toolkit.

2. A Conda environment was initialised in VSCode with Python 3.8.15 and its default
dependencies.

3. A number of external packages were installed in the Conda environment based on
documentation found on their dedicated webpages, including:

a. Selenium 4.7.2
b. Prodigy 1.11.8
c. spaCy 3.4.3
d. The CyNER model3 [1]

4. Selenium was used to scrape alerts from [2] and dump the shuffled text into a .jsonl
file (Fig. 6)

3 Two issues were identified with the CyNER model which prevented it from immediate compatibility: 1) The
`transformers_model` key in the `cfg` dictionary (under the Demo.ipynb) was incorrectly configured, and should
be replaced with `model` (ref. to line 22 of `transformers_ner.py`). 2) Training the model yielded an encoding
error on the Windows 10 machine, which can be fixed by specifying an additional parameter `encoding =
“utf-8”` in an `open()` function (line 395 of `tner/get_dataset.py`).



Fig. 6 - Code snippet for the Selenium web scraper, which pulled elements contained within
<p> tags found under the <div> tag with id “ncas-content”, tokenized the text into

sentences, removed duplicate entries (lines 24-26), and shuffled the non-duplicate entries into
a .jsonl file format

5. Prodigy was used to manually annotate the text entries using spaCy’s `blank:en`
pipeline. A total of 400 entries were labelled (though the presence of “\n” sequences
led to the removal of 5 entries in step 6). The entities used followed those found in the
datasets provided with the CyNER model:

a. Indicators - specifics indicating malicious activity (file names, domains, port
connections, processes, registry keys, settings)

b. System - applications and tools (downloadables; exclusive of algorithms and
standards such as protocols and encryption standards)

c. Vulnerability - Common Vulnerabilities and Exposures (CVEs), known names
and where specified (e.g. “Microsoft Exchange Server Vulnerability” is not a
system but a vulnerability)

d. Malware - Malware Analysis Reports (MARs), known names and where
specified (e.g. “Maui ransomware”)

e. Organisation - self-explanatory; threat actors using the same malware are also
considered an organisation (e.g. Zeppelin actors)

6. The output .jsonl file containing entity tagging information was converted to
IOB-tagged [25, pp. 295 - 296] .txt files with an 80-10-10 split across train, validate
and test datasets [26] respectively (Fig. 7)



Fig. 7 - Code snippet used for formatting the Prodigy-labelled .jsonl file into IOB-tagged .txt
files. A total of 395 entries were split into their respective train, validate and test sets.

7. A total of 3 separate datasets (each with their own train, validate and test sets) were
separately used to train the CyNER model (Fig. 8): 1) the CyNER-provided dataset,
2) the manually labelled dataset, and 3) a combined dataset, where the manually
labelled datasets were appended into the corresponding CyNER-provided datasets.
Model outputs were logged into separate .txt files for data analysis.

Fig. 8 - Code snippet used to train separate instances of the CyNER model. The default
hyperparameter values provided in the CyNER documentation were used, except for the

maximum sequence length which was reduced from 128 to 64, as the original setting caused
the CyNER model to use excessive GPU memory beyond the 16GB limit



Results

Fig. 9 - A multiple line graph of the CyNER model’s macro-averaged F1-score, calculated
w.r.t. the respective validate sets, plotted against epochs during the model training process,

for each of the used datasets

Fig. 10 - A composite bar chart of the CyNER model’s macro-averaged F1-score (yellow),
calculated w.r.t. the respective test sets after epoch 20, as well as the number of labelled
entities in the respective validate (blue) and test sets (red), for each of the used datasets



Analysis

With reference to Fig. 9, the CyNER model instance trained on the manually labelled datasets
(blue) exhibited noticeably lower F1-scores than instances trained on the other 2 datasets (red
and yellow); macro-averaged F1-scores for the former only reach their maximum at epoch
20, with a value of about 0.65, while that of the latter datasets stay within the neighbourhood
of 0.7 to 0.8 from as early as epoch 5.

It is also noted that the macro-averaged F1-score, calculated in relation to the unseen test set
(after the model was trained for 20 epochs), decreased further for the model instance trained
with the manually labelled dataset, with a drop from around 0.65 to 0.52 (Fig. 10), whereas
the model instances trained on the other 2 datasets barely registered any drop at all.

Limitations and Future Direction

It is clear that the model instance trained on the manually labelled data is weak in
generalising to other unseen data, which can be attributed to a few key factors:

First and foremost, the manually labelled dataset is considered extremely small, containing
only 50 labelled entities in the validate subset and 58 in the test subset, significantly less than
the CyNER-provided datasets and combined datasets which have labelled entities numbered
close to a 1000 (Fig. 10). The small number of labelled entities present means that the dataset
is likely not a good representation of the entity classes as a whole. This problem can
potentially be solved by annotating a wider variety and larger volume of
Cybersecurity-related text (instead of being limited to CISA alerts).

The CISA alerts were also seen to contain rather rigid and non-natural language, especially
due to frequently occurring bullet point text, which could have prevented the model from
properly extracting semantic context from the input data entries. Furthermore, CISA alerts
follow a predefined template, including sections such as “Acknowledgements” whose
structure tends to be repetitive across the alerts without the content strings being exact
duplicates (which is all that the code snippet in Fig. 6 manages to filter out). Again, because
of the “templated” structure of CISA alerts, annotating a wider variety of
Cybersecurity-related text from other sources may help the model generalise its predictions
better. In addition to this, using data cleaning techniques such as Regular Expression (RegEx)
filters and other purpose-built NLP models may have helped in removing “dirty” data entries;
the importance of thorough data cleaning should be noted as an especially large takeaway
from this project.
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